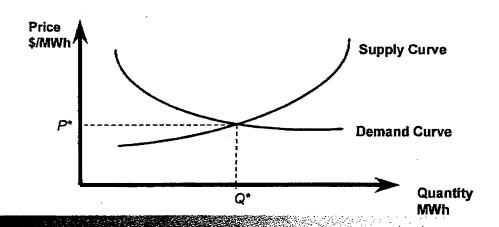
California Market Structure

- California energy "market" is complex
 - A progression of forward and spot markets
 - Day-ahead (consisting of 24 separate hours)
 - · Hour-ahead
 - Real-time
 - Separate markets for different commodities
 - Multiple forward energy markets (PX and SCs)
 - Forward transmission market (ISO)
 - Inter-zonal
 - Intra-zonal
 - Multiple ancillary services markets (ISO or self-provision)
 - Single real-time imbalance energy market (ISO).
- The separate markets interact in complex ways


perotsystems-

Winning in California Markets

- What strategies will help you prosper in the California market structure?
- Often heard "folk" wisdom:
 - "Bid your true costs and you will maximize your profits."
 - How did this folk wisdom arise?
 - Is it true?

Underlying Economic Theory

- Each individual market is based on a simple supply/demand economic model
 - Operate at intersection of supply and demand curves
 - · Socially optimal production and use
 - Market clearing price

perotsystems

Auction Theory

- Socially optimal production and efficient prices result if producers & consumers bid true supply and demand curves
 - How do you get parties to bid their true costs?
- Auction theory
 - Parties bid true supply and demand curves when
 - Each party is small compared to the market
 - Market is run once (or infrequently)

Reality vs. Economic Theory

- Supply and demand curves are not smooth functions
 - Start-up costs
 - Uncertainty
- Published protocols governing California markets from deviate from theory and physical reality
 - Gaps within a single market
 - Some markets will not "clear" and may be unstable
 - Constraints that couple the schedule in one hour to the schedule in the next hour are ignored
 - Gaps between markets
- Strategies can affect prices

Reality vs. Auction Theory

- Simple auction model ignores important features
 - Locational market power due to transmission
 - Inter-zonal
 - Intra-zonal
 - Frequently repeated markets
 - Interacting markets
 - Energy
 - Reserves
 - Cooperative behavior among participants
- Parties can bid strategically to take advantage of deviations from theory

Business Rules

- Published business rules and processes need more work
 - Setting ancillary service requirements
 - Interaction with WSCC
 - Communicating real-time instructions to resources
 - Deciding whether a service has been delivered
 - · Affects compliance and payments
 - Penalties for non-performance

Strategic Decisions in California

- Decide which forward energy market to use
 - PX or another Scheduling Coordinator
- Decide how to use resources
 - Bid capacity in one market and withhold in others
 - · Energy market vs. reserves markets
 - · Hour-ahead vs. day-ahead vs. real-time
- Tactical decisions
 - Adjust bid prices
 - Treat physical constraints skipped in protocols when bidding or ignore and lean on ISO

Steps in Developing Strategies

- Expert analysis
 - Review of business protocols
 - Review of competitor characteristics
 - Identify potential strategies based on experience
- Analytical tools
 - Test possible strategies against computer
 - Test possible strategies against user specified counter strategies
- War gaming
 - Red team, blue team competition
 - Analytical tools provide playing field

Analysis of Protocols

- Gaps in the protocols provide
 - Opportunities for increased profits
 - Chance for other players to damage your position
- Analyze protocols
 - Find leverage points you can use
 - Find ways to protect against actions of others
 - Develop potential "raw" strategies
 - Prioritize for detailed investigation

Development of Practical Strategies

- Analysis provides the foundation
 - Analysis of protocols
 - Analysis of competitors
 - Gives start for the development of usable strategies
- Development of practical strategies requires detailed simulation of market operations
 - Impact of your actions
 - Impact of competitors' actions

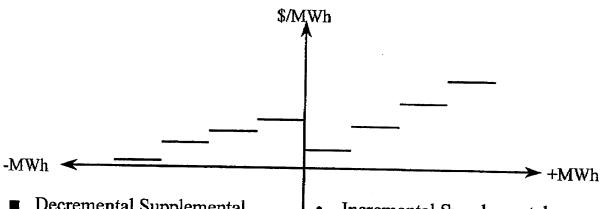
Analytical Business Model

- Detailed computational business model of the California markets is required
 - Model protocols and market operation in detail
 - Strike a balance among
 - modeling detail
 - computational resources needed
 - available market information
 - Game theoretic model with multiple participants
- Must accept a wide range of possible strategies and evaluate the outcomes

Developing Strategies

- Develop strategies that allow you to operate within the protocols and increase your profits
- Workable strategies
 - Do not require unrealizable precision in forecasts
 - Position you to take advantage of opportunities to increase profits when they arise
 - Limit losses if conditions differ from expected
- Examine the range of strategies that others may use to increase their profits
 - Develop counter strategies that limit their detrimental impact on you

Changing Protocols


- ISO/PX will recognize holes as they operate
 - Revise protocols and systems to close the gaps
 - Time lag between recognizing and closing gaps
 - Window of opportunity
 - Closing one gap may open others
- Market rules will be fluid for a while
 - ISO/PX will be pressured to provide new services and capabilities
 - · Long-term tradable transmission rights

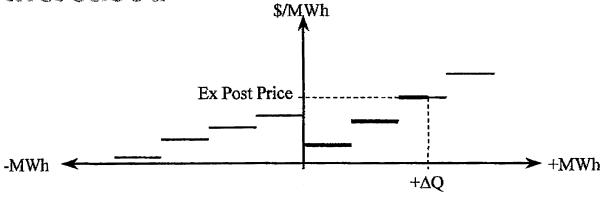
Ongoing Process

- Strategy development is not static
 - Protocols evolve
 - Competitors learn new strategies
- Strategy development is an ongoing effort
 - Monitor operation of market
 - Monitor actions of competitors
 - Revise strategies to keep pace

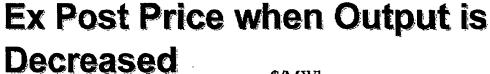
Example of a Protocol Gap

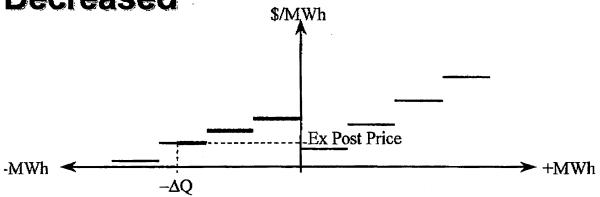
- Perot Systems discovered a "hole" in the ISO's protocols for buying, selling, and pricing imbalance energy
 - Allowed strategies that would destabilize the market
- Points we will cover in this example
 - The way the market would have operated
 - A simple example of a strategy to increase profits
 - The effects on participants, the PX, and the ISO
 - Ways to correct the problem

Decremental Supplemental Energy Bids

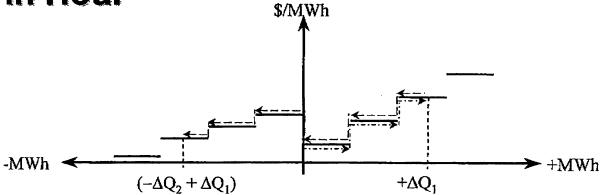

If ISO must reduce energy output

 Incremental Supplemental Energy Bids and Energy from Reserves


If ISO must increase energy output


From: Robert McCullough To:
Jun-04-2002 02:08pm

- If additional energy (△Q MWh) were needed
 - ISO would dispatch the incremental bids and reserves with available energy in order of increasing bid price
 - Ex post price would be the price of the most expensive resource dispatched



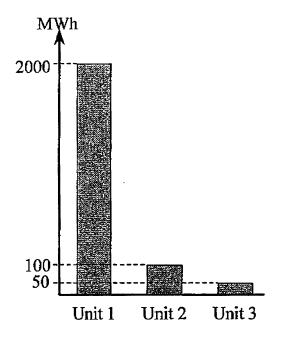
- If reduction of energy $(-\Delta Q MWh)$ were needed
 - ISO would dispatch the decremental energy bids with available reduction in order of decreasing bid price
 - Ex post price would be the price of the least expensive resource dispatched downward

perotsystems*

Output Increases then Decreases in Hour

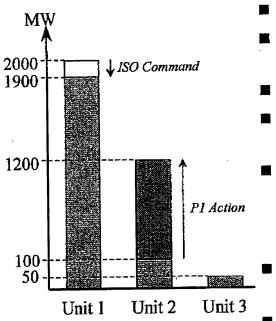
■ Increased output of $+\Delta Q_1$ followed by decrease of $-\Delta Q_2$ within the hour, with $\Delta Q_1 < \Delta Q_2$

Controlling the Real-Time Market


- The structure of the real-time imbalance energy market would have permitted strategies by which a participant could have:
 - controlled the ex post price
 - dumped power on the real time market at a very high ex post price
 - caused wild swings in the ex post price

Simplified Example

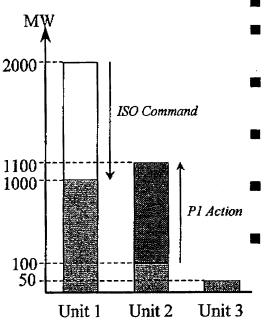
- Participant P1 has three generation units:
 - Unit 1 with operating limits of [100 MW, 2000 MW]
 - Unit 2 with operating limits of [100 MW, 2000 MW]
 - Unit 3 with operating limits of [50 MW, 100 MW]
- P1 bids to sell 2150 MWh in the forward market (for 1 hour)
 - P1 intentionally forgoes the chance to sell an additional
 1950 MWh in the forward market
 - P1 will use this capacity to control the ex post price and sell high-priced imbalance energy


Schedule and Supplemental Bids

Schedules from Forward Market

- Supplemental Energy Bids:
 - Unit 1: Decremental only 10,000/MWh for $100 \le x \le 2000$
 - Unit 2: No Bid
 - Unit 3: Incremental Micro Bids 0/MWh for $50 \le x \le 55$ 10/MWh for $55 \le x \le 60$
- Suppose that Unit 1 submits highest priced decremental bid to ISO

Case 1: ISO Needs Additional Energy



- Suppose ISO needs 1,000 MW more
- ISO will use incremental bids (including Unit 3 which gives P1 information)
- P1 starts to increment Unit 2 on its own
- ISO first backs down previously incremented units
- Unit 2 reaches a point at which ISO will have decremented all previously incremented units and starts reducing the highest priced decremental bid (Unit 1)
 - P1 sells 1,000 MWh in imbalance energy market
- Ex post price set by last unit decremented (\$10,000/MWh)
- P1 is paid \$10,000,000

24

perotsystems*

Case 2: ISO Must Reduce Output

- Suppose ISO must reduce by 1,000 MW
- ISO will use decremental bids and back Unit 1 down by 1000 MW
- P1 would have to pay the ISO \$10,000,000 to replace Unit 1's output
- P1 eliminates this risk by simultaneously increasing Unit 2 by 1000 MW
- P1's total real-time output is at scheduled value, so P1's net payment to ISO is \$0
- ISO has problems:
 - Imbalance persists
 - ISO leans more on regulation
 - Regulation capacity requirements increase so ISO must buy more
 - Ancillary service costs increase

perotsystems*

25

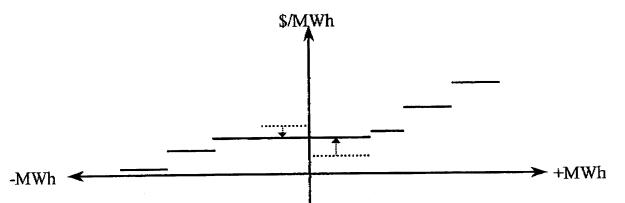
Effects on Other Participants

- Suppose that a participant usually experiences appreciable error in forecasting its real-time load
 - It would buy and sell energy on the imbalance energy market due to forecasting errors
 - It could experience extreme peaks in its payments for imbalance energy if ex-post price can rise very high
 - It could insure against these peaks:
 - Always schedule more energy in the forward market than it expects that it will need in real-time
 - Usually sells energy on imbalance energy market (or at least reduce the size of its purchases)
 - Additional costs if forward price > ex post price, but reduces its payment peaks for imbalance energy

perotsystems-

Effects on PX

- PX participants would be exposed to swings in expost price
 - PX participants could insure themselves against effects
 - Grouping participants reduces the amount of extra energy that must be scheduled and the expected cost
 - PX cannot take such a position to insure a group
- Power Marketer (PM) can take a position in a forward market to insure its participants
 - PM takes a position in forward market to sell insurance that PX cannot sell
 - PM attracts participants from the PX


Effects on ISO

- Parties could have tried to dump considerable energy on the ISO's imbalance energy market
 - ISO would have needed to decrement energy production more than anticipated
 - Decremental supplemental energy bids are voluntary
 - No concept of the ISO buying "negative reserves" to ensure that it will have enough units that it can decrement
 - ISO may have to lean more on regulation
 - ISO may have to administratively reduce some generation
 - Real-time imbalance energy market may "fail" to set an ex post price based on decremental energy bids

ISO's Correction

- The ISO has revised the protocols to make a market that appears to clear:
 - Calculate the market clearing price (MCP) that would result if the ISO were to clear the real-time energy market
 - For incremental supplies with price less than MCP,
 raise the price of the supply to the MCP
 - For decremental bids with price more than MCP, lower the price to the MCP
- Effect on strategies unclear
 - Not aware of any strategic studies

"Re-Priced" Merit Order Stack

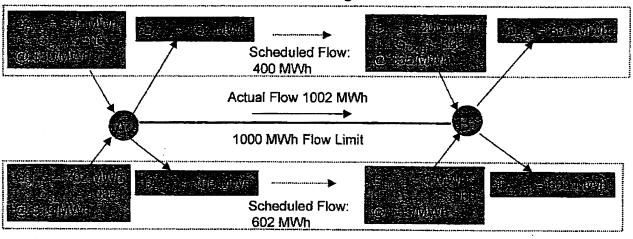
Decremental Supplemental Energy Bids

If ISO must reduce energy output

 Incremental Supplemental Energy Bids and Energy from Reserves

If ISO must increase energy output

Another Protocol Gap


- Perot Systems discovered a "hole" in the PX's protocols for setting zonal energy prices when there is congestion.
 - Adverse interaction with a hole in the ISO's protocols for setting congestion usage charges.
- A small participant could control prices in CA and destabilize the PX market.

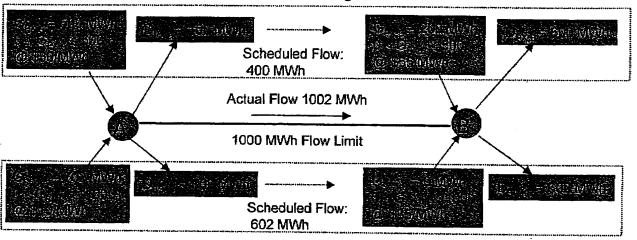
Schedules and Adjustment Bids

- Each SC develops a preferred schedule for its forward market.
 - SC's generation equals its demand in each hour.
- ISO combines SCs' schedules and checks for transmission congestion.
 - SCs provide adjustment bids that are used to eliminate congestion. The bids give:
 - Cost of increasing output from a resource.
 - · Savings due to reducing output of a resource.

Example with Congestion

SC1

Transmission limit is violated, so ISO must reschedule to eliminate congestion. How should the ISO reschedule the resources?


perotsystems*

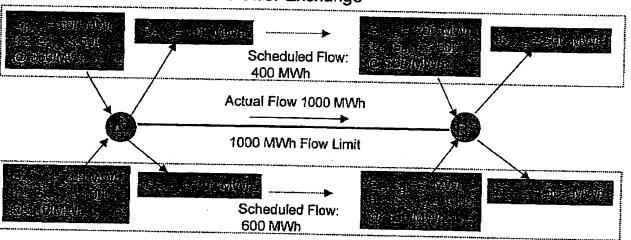
Market Separation

- The ISO runs a transmission market.
 - ISO adjusts SCs' schedules to maximize value of transmission usage and eliminate congestion.
 - ISO does not become involved in forward energy markets by arranging trades.
 - ISO keeps each SC's generation in balance with its demands (market separation constraint).
- The SCs' adjustment bids are interpreted as implicit bids to use transmission capacity.

Example with Congestion

Power Exchange

SC₁


PX values transmission capacity at \$65/MW - \$30/MW = \$35/MWSC1 values transmission capacity at \$35/MW - \$10/MW = \$25/MWISO allocates transmission to most valuable use (PX).

perotsystems-

35

Reschedule to Relieve Congestion

SC1

ISO shifts 2 MWh of SC1's generation from $G_{SC1,A}$ to $G_{SC1,B}$.

ISO does not arrange trades to lower cost.

Arranging such trades is left to the SCs who run the energy forward markets.

36

perotsystems*

Congestion Usage Charges and Zonal Marginal Costs

- Usage charge for sending energy from one zone to another is difference between zonal marginal costs.
- Zonal marginal costs depend upon SC:
 - The SCs' forward energy markets are separate.
- Differences do <u>not</u> depend upon the SC.
 - Cost of moving a MWh of energy from one zone to another is independent of SC.
- In the example, usage charge is \$25/MWh.

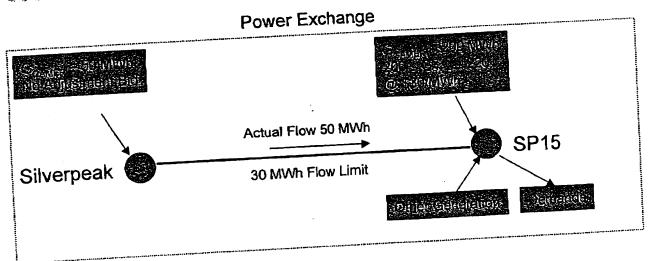
PX Zonal Energy Prices

- PX sets zonal energy prices so that:
 - Zonal energy price in each zone ≥ most expensive energy in each zone
 - Differences between zonal energy prices equals ISO's usage charge between the zones
 - Zonal energy prices as low as possible subject to above.
- Zonal energy prices in example:
 - Zone A: $MC_{PX,A} = $40/MWh$
 - Zone B: $MC_{PX,B} = $65/MWh$.

Check of Marginal Costs for PX

- To calculate $MC_{PX,A}$ increment $D_{PX,A}$ by 1 MWh:
 - PX increases $G_{PX,B}$ 1 MWh @ \$65/MWh and sends to A.
 - Flow from B to A provides 1 MW of capacity from A to B.
 - SC1 increases $G_{SC1,A}$ 1 MWh @ \$10/MWh.
 - SC1 decreases G_{SC1.B} 1 MWh @ \$35/MWh.
 - $MC_{PX,A}$ is \$65/MWh + \$10/MWh \$35/MWh = \$40/MWh.
- To calculate MC_{PX,B} increment D_{PX,B} by 1 MWh:
 - PX increases G_{PX,B} 1 MWh @ \$65/MWh.
 - MC_{PX,B} is \$65/MWh.
- PX's cost of sending energy from A to B is $MC_{PX,B} MC_{PX,A} = $25/MWh$.

Hole in PX Protocol


- The PX Protocols required non-negative zonal energy prices.
- If insufficient adjustment bids to alleviate congestion on a path, ISO would:
 - Allocate transmission capacity to SCs pro rata.
 - Set a fixed default usage charge on the path.
 - ISO was planning to use \$250/MWh as the default.
- ISO and PX protocols could interact to destabilize the market.

Game ...

- A relatively small PX participant could purposely congest a small interzonal path.
 - Consider Silverpeak intertie (30 MW capacity).
 - Gamer could bid 250 MWh in PX auction at \$0/MWh
 - Assume that he wins and PX UMCP = \$25/MWh.
 - Gamer would schedule 50 MWh at Silverpeak intertie and 200 MWh in California (SP15).
 - · Silverpeak is congested as a result.
 - Gamer would not give a decremental adjustment bid on the 50 MWh he schedule at Silverpeak.
 - ISO will use pro rata allocation and set default usage charge on Silverpeak intertie= \$250/MWh.

Jun-05-2002 02:00pm

. Game ...

- •ISO shifts 20 MWh of Gamer's generation from Silverpeak.
- •ISO sets default usage charge = \$250/MWh on path since it ran out of adjustment bids to reduce generation at Silverpeak.
- •Assume that ISO uses Gamer's adjustment bid in SP15 to replace the 20 MWh to keep the PX in balance. perotsystems-

... Game

- PX requirements on zonal prices:
 - $-ZMCP_{SILVERPEAK,PX} \ge $0/MWh.$
 - ZMCP_{SP15,PX} ≥ Most expensive energy purchased in zone (assume that this is \$30/MWh).
 - Difference in PX zonal prices equals ISO usage charge.
 - $ZMCP_{SP15,PX} ZMCP_{SILVERPEAK,PX} = $250/MWh.$

Result

- $-ZMCP_{SILVERPEAK,PX} = $0/MWh$
- $ZMCP_{SP15,PX} = $250/MWh!$
- Gamer was able to increase the price it receives for the 200 MWh it scheduled in SP15 by \$220/MWh.

Jun-05-2002 02:00pm

Corrections

- PX removed requirement for non-negative prices
 - If a participant does not give a decremental adjustment bid, he is saying that he will sell the energy at any price.
 - This price can be negative -- i.e., he will pay the PX to take the energy.
 - When the ISO runs out of adjustment bids, the ISO sets the default usage charges based on the adjustment bids that it had received and used.